

• Find an admissible pattern for f₁ from the above library.

For finding f_2 , set Ψ_1 is obtained as follows: if a minterm of n is not a minterm of f_1 , add this minterm to Ψ_1 .

Similarly, for finding f_2 , set Ψ_0 is obtained as follows: if a maxterm of n is not a maxterm of f_1 , add this maxterm to Ψ_0 .

 A suitable pattern for f₂ is then determined using new Ψ₁ and Ψ₀ (from the above library). Furthermore, to determine f₃, Ψ₁ and Ψ₀ are updated again as follows: if a minterm (maxterm) of node n is pot a minterm (maxterm) of both f1 and f2, add this minterm (maxterm) to Ψ₁ (Ψ₀).

Question 2: Perform the AND/OR mapping of the same expression $n = a.\overline{b.c} + \overline{a.b.c} + \overline{a.b.c} + a.b.c$. Then see the difference in the number of majority gates used for K-map method and AND/OR method.

